

EXPERT ADVICE: PLAIN \& SIMPLETM
YOUR
EXPERTS
GB
Graham

Graham Thompson GT-Trail's
technical editor technical editor
for over 25 years for over 25 years
is our walking gear guru.

Rob Johnson MiC Rob is an
international expedition leader
and mountain and mountain
instructor.
 Lyle Brotherton Navigation expert
Lyle is one of the world's leading
authorities on authorities on
search and rescue

Jeremy Ashcroft
Trail's mountaineering editor Jeremy has a lifetime of outdoors
experience. experience.

In Part 3 of our skills series, navigation expert Lyle Brotherton takes you into your local 'hood. Don't worry - we'll be on the hill soon!

Pacing is a very straightforward yet highly effective technique that's in
my top 10 navigational 'must haves'! To do it all you need to know is your personal pace count - how many paces it takes you to walk 100 m because knowing this, you can easily calculate how far you have walked. Select a level piece of ground (it can be the street outside your house, a local sports field, football pitch or municipal park) and measure out 100 m in a straight line. If you have a known-length climbing rope use this; if not, measure out 10m of string.
Mark your starting point, then lay out the string ten times to determine your 100 m point and mark this.
© From here, walk at your normal pace back to the start and by putting your left lepg forward first. by putting your left leg forward first,
count every step thereafter of your right foot only; this is a double step and it counts as one pace.When you reach the start,
make a note of this number.Now repeat this exercise by walking back to where you came from, again counting the
(5) Keep doing this until you $\begin{aligned} & \text { consistently get the same }\end{aligned}$ number - this is your personal pace count. (Typically this varies from 55 for very tall people to 75 for folk with shorter legs.)
Now you know your own pace count, you can predict how many paces you will need to cover, for example 200 m . Start walking, and when you reach your pace count number you've
covered 100 m . Then start counting covered 100m. Then start counting

Timing requires less
Timing requires less
concentration than pacing and is easier to use, especially over long distances. Howev when these two
techniques are used together they are a brilliant set of navigationa skills and can be a lifesaver in poor visibility. Knowing how fast you are walking and relating key to this techniqu.

Timing card

Timing card			Speed		
\| Distance	2kmph	3kmph	4 kmph	5kmph	6kmph
50m	1 min 30 sec	1 min	45sec	36sec	30sec
100m	3 min	2 min	1min 30sec	1 min 12 sec	1 min
200m	6 min	4 min	3 min	2 min 24 sec	2 min
300m	9 min	6 min	4 min 30sec	3 min 46 sec	3 min
400m	12min	8 min	6 min	4 min 48 sec	4 min
500 m	15 min	10min	7 min 30 sec	6 min	5 min
1000m	30min	20 min	15 min	12 min	10min

from zero again, and when you reach your pace count again this time you'll
200 m in total It therefore follows that if you want to cover 50m, just For short distances it's easy to remember how many times you have walked 100 m , but if you are wanting to measure say 500 m it is easy to get confused. To remedy this, pick up five little stones; every time you reach your pace count, drop one stone and start to count from zero again. When you have dropp your last stone you hav travelled 500m.

A better alternative to pebbles is to make a 'tally counter (see above). Put ten toggles on a length of paracord, attach them to your rucksack, and move one down for every 100 m covered.

It can be tricky to keep count using your digits (and especially if wearing mittens!),

Approximate speeds for different terrain
I 5 kmph level surface covered in grass
4kmph variable, rough surface
| 3 kmph soft snow/strong headwind
2kmph deep snowdrift/severe headwind
Looking at the table above, and every minute 83.3m. walking on a level, grassy For shorter distances the surface for an hour without calculations can be tricky, stopping, you will cover 5 km . So to make this easy below is
Thus in half an hour 2.5 km . a table that you can cut out $\begin{array}{ll}\text { Thus in half an hour } 2.5 \mathrm{~km}, & \text { a table that you can cu } \\ \text { in quarter of an hour } 1.25 \mathrm{~km}, & \text { and carry with you. }\end{array}$

From the timing card, let's say you want to cover 500 m to your next attack point and Simply check your watch set
off, and stop when you have been walking for 7 min 30 sec. Similarly, to cover 750 m at 4 kmph , walk for 11 min 45 sec (500m $=7$ min $30 \sec +$
$200 \mathrm{~m}=3 \min +50 \mathrm{~m}=45 \mathrm{sec})$ However, your speed can vary; again, the calculation cutout and kee for you to cut out and keep:

An easy way to get to know your different
 walking speeds is to do this either using a hand-held GPS or download an app such as Viewranger to your smartphone.

You can buy a handy plastic credit card-sized version of this table at www.shavenraspberry.com

$5 \cdot 5 \cdot y 15$

EXPERT ADVICE: PLAIN \& SIMPLE ${ }^{\text {TM }}$

Taking a bearing using your map

Assume the brace position and
3 Rotate the compass beze until the N on the bezel points north on the map (alway the top of the map). Align the compass housing orientating ine parallel with th
blue grid lines.
The bearing to this object is indicated at the index. To maximise accuracy when following this bearing on a compass, you would need to adjust for magnetic declination, which we will cover in a later issue.
1 Identify where you are on the -map (Point A) and the feature you wish to take abea

2 Use the ruler line on the Point B making sure that the arrow on the compass points in the direction you wish to go. Note: you can ignore the compass needle as it is not required for
 this technique.

Collecting features

Features are the things you predict or know will be on your chosen path. Mentally collecting them along the way Typically, collectable features are

1 Spot features: such as bridges, intersections of paths, junctions in vers/streams, cairns, summits. 2 Linear features: such as walls, streams, and ridges with no junctions. Area features: the terrain may change tart going uphill or downhill the ground levels out; you reach a particular land feature

Graham
Thompson GT-Trail's technical editor for over 25 years
is our walking is our wakining
gear guru.

Rob Iohnson MIC Rob is an
international international
expedition leader and mountain instructor. Ners
in
Lyle Brotherton Navigation expert Lyle is one of the
world's leading authorities on search and rescue.

Jeremy Ashcroft Trail's mountaineering
editor Jeremy hasa editor Jeremy hasa
lifetime of outdoors experience.

In PART 5 of our navigation serie with Lyle Brotherton we start looking at the techniques that can be put into practice where we need them most: on the hill.

Handrailing

A 'handrail' is an easily identifiable linear feature, marked on your map, that you can follow towards your next attack point (or destination).

Typical handrails are:
\square Fences
Forest edges
\square Overhead power lines
\square Paths, roads and tracks
River banks
Ridges

- Stream bect
Valleys

Valleys
If visibility is reduced, either in poo If visibility is reduced, either in po weather or Iow light levels, then foliowing a handrailis the safest fory
of travel-and in severe conditions. the technique becomes essential.
 woodiand is the handrail.

L 5 Thompson GT - Trail's technical editor for over 25 years-
is our walking is our walking
gear guru.
 Johnson MII Rob is an
international expedition leader and mountain hare
an en Brotherton Brotherton Navigation expert
Lyle is one of the world's leading authorities on earch and rescue

-xal y^{3}

 Jeremy Ashcroft Trail'suntaineer mountaineering editor Jeremy has a
ifetime of outdoors experience.

EXPERT ADVICE: PLAIN \& SIMPLE ${ }^{T M}$

parallel lines would be lines of latitude. magnetic north, and this angular

This is the universal coordinate system used on maps the world over.
The British Isles cover a small section of the Earth, and lines of longitude and latitude curve, so Ordnance Survey introduced its own grid system: the National Grid. These are the blue lines on your OS maps (grey on Harvey), and the vertical ones point to grid north. Our compasses, however, point to

In PART 6 of our navigation series Lyle Brotherton explains why there

- he navigation term grid he navigation term grid
magnetic angle (GMA) sounds daunting, but it isn't! Here you will learn exactly what it is, and how and where to use it. If you stick a pencil vertically through an orange and imagine it is the Earth on its axis, the point at the top would be true north. This is where all lines of longitude originate. Running across the orange, imaginary
 difference between the north on you compass (magnetic) and the north on your maps (grid) is called grid magnetic angle, or GMA (not to be confused with magnetic declination or variation, which is the difference between true north and magnetic north). When we transfer a bearing from our compass to our maps, or vice versa, we need to take the GMA
difference into account difference into account. All OS and Harvey maps state what
the difference between magnetic north the difference between magnetic north and grid nor
(see left).

is more than one north! \square To adjust for GMA when transferring a bearing taken with your compass to a map (grid), SUBTRACT the grid magnetic angle from your compass bearing.
\square To adjust for it when transferring a bearing taken on your map to your
compass (mag) - ADD the grid magnetic angle to your compass bearing.
A simple mnemonic to help you remember how to do this is Add for mag, Rid for grid.

If the difference is 1.5° or less, we can forget about it. So for example in Devon, where it is currently less than 1°, we need not bother; . A couple of degrees might not seem much Aut if you were 2° out when you took your bearing and another 1° when transferring it your compound error including GMA could be 5°, which over a kilometre means you will miss your target by more than 87 m !
The magnetic north pole is also moving over time, so check the date of your map. You can find the up-to-date GMA on the British Geoological Survey's website at tinyurl.com/GMAcalc lf your map is more than 5 years old, visit this website and write on your map the GMA plus the date. If navigating abroad you'll need to take account of the variation between magnetic
north and true north (magnetic declination or ariation) if a local grid system is not used, such as in Canada and America - where the variation an be as much as 25° !

For the adventurous among us, you can calculate your local GMA when out navigating:
1 Locate exactly where you are on the map; the more accurate the fix, the more accurate your result.
2 Take a bearing with your compass on a distant feature, ideally one that is narrow such as a radio mast and which is identifiable on your map.
3 Make a note of this bearing.
4. Now take a bearing on the map on the map) (on the map).
5 The difference between these two earings on an OS or Harvey map is your local GMA.

EXPERT ADVICE: PLAIN \& SIMPLE ${ }^{T M}$

Rob Johnson MIC Rob is an international
expedition leader and mountain instructor.

Lyle
Brotherton Navigation expert
Lyle is one of the Lyle is one of the
world's leading authorities on search and rescue.

Jeremy Ashcroft Trail's mountaineering editor Jeremy has a ifetime of outdoors experience.

In PART 7 our navigation series, Lyle Brotherton explains how to cleverly avoid obstacles.
short 'legs'. Each leg starts from a known point and leads to an identifiable point in the landscape/on the map known as an 'attack point'. Given good visibility, your attack point can be quite a distance from where be obstaclensequently there may difficult to walk over, such as rough ground or a bog, which require you

reached it, turn around and confirm that you are in the correct place by

Pure box
This technique is used where you cannot see to the other side of the obstacle.

Stop at a safe distance from the obstacle - in this case a bog. Estimate its size, either from the map or visually if it is not on the map. The detour starts at right angles to the obstacle by choosing either east or west on your compass.

1. As you've been walking on compass will the needle of your north. Rotate your body until the red north of the compass needle points to either east or west on the compass bezel.

- Do not touch the compass bezel! Pace the new bearing (along the 'direction-of-travel' indicator on your compass), counting your steps until reaching the outer edge of the obstacle.

Turn so that the needle of your compass is once again pointing north, and begin walking on your original bearing.

On reaching the far edge of the obstacle, stop and north of the body until the red points either east or west on the compass bezel (whichever is the opposite of that selected at the start of your detour).
-Walk on this bearing for the same distance that you paced on the first leg of your detour, then stop. You should now be back on your original line. Turn so that your compass needle is pointing north once more, and continue on your original bearing.

Stepped box
This technique is used if the obstacle is particularly large and irregular in shape.

Stop at a safe distance from the obstacle. The detour starts at right angles to the obstacle by choosing east or west on your compass.

1 As you've been walking on a bearing, the pointing north. Rotate your body until the red north of the compass needle points to either east or west on the compass bezel.

Do not touch the compass bezel! Pace travel' indicator on your compass), counting your steps until reaching an area where it is safe to walk forward again.

4 Turn so that the needle of your compass - is once again pointing north, and begin walking on your original bearing until reaching another area where you need to detour.

Repeat steps 2-4 until you have cleared the obstacle, making a note of your before the obstacle (A).

- If your progress is blocked by the obstacle, however, repeat steps 2-4 in the opposite direction, deducting steps from your pace count as you travel.
(1) You should now be back on your original is pointing north once more, and continue on your original bearing.

EXPERT ADVICE: PLAIN \& SIMPLE ${ }^{T M}$

From your starting point, From your starting point,
take a bearing on a prominent feature (see diagram) - one that will be visible from all points on your journey. This bearing is your baseline; make a note of this number.
2. Study the map and select a hook '"catching feature', prominent feature from where you are, and make a note of this.
On your journey, if you need to make a direct route back to your start, or you are lost,locate peven if you have to (safely) ascend to do so. 4 Take your bearing to it.
If your bearing reads fewer degrees than your recorded baseline, move left.
If your bearing reads more degrees than your recorded baseline, move right.
-When your current bearing to the feature matches your baseline, following it will always take you to

Back bearing A 'back bearing is in the opposit direction to your travel, ie plus or minus 180 degree For example: if you are following to walk back along exactly the same exactly the same would be 250° would be 250°
$\left(070^{\circ}+180^{\circ}=250^{\circ}\right)$ This is the back bearing.

back, if the prominent feature

 disappears from sight, or if you encounter obstacles in your path, use your 'boxing' techniques (see the March 2017 issue of Trail) to bypass them, and you will eventuallyIf you overshoot your start your hook (catching feature) will stop you:
If you reach your catching
feature, stop.

2. Determine the back bearing
 (see boxout, above right) of your prominent feature

 prominent feature.5 Now travel along your catching
Travel back towards to your
4 starting point.
Employing this technique allows you to roam without a specific route, even off your map!

66 Employing this technique allows you to roam without a specific route 99

Jeremy Ashcroft Trail's mountaineering
editor Jeremy hasa editor Jeremy has a
lifetime of outdoors experience.

In Clasgow, the middle tower became the
'baseline' feature, with the motorway
in the for in the foreground as the hook:

In PART 8 of our navigation skills series, Lyle Brotherton shares a handy technique that can help if you get lost...
developed the 'hook \& baseline' technique while exploring the flat and relatively featureless Somme Valley in northern France, and I now employ it every where I navigate, from the streets of Manhattan to the mountains of Scotland. A baseline' is simply a bearing taken on any prominent feature, from a wate
tower or a skyscraper to a mountain peak, that you can use to find your way tower or a skyscraper to a mountain peak, that you can use to find your way
back to your starting point - and it is especially useful if you are lost. A 'hook' is a'catching feature' behind the prominent feature from your starting point in Manhattan for example I used the Hudson River.

 GT-Trail's technical editor for over 25 years-
is our walking is our walking
gear guru.

Rob Johnson MIC Rob is an
international international
expedition leader and mountain instructor.

Lye Brotherton Navigation expert
Lyle is one of the world's leading authorities on
search and rescue
 experience.

As summer approaches, a map can often be the only navigational tool you bother using - but which mapping scale is best? In PART 10 of our navigation series, Lyle Brotherton explains how to interpret them.
n Great Britain, we are fortunate to have the best maps for walking in the world, and all due to the creation of our national mapping agency, Ordnance Survey (OS), on 21 June 1791. Originally all Ordnance Survey mapping used Imperial measurements: miles, yards, feet and inches. Today they all use the much simpler metric system (kilometres, metres and centimetres) and we also have access to other excellent maps available from Harvey Maps.

The tricky part: map scales!

 the map.
If your map has a scale of 1:25,000, this means that every 1 unit on the map represents unit on the map represents of measurement on the
 is always 1. The second number
(ground distance) is different for (ground distance) is different for
each scale - the larger the number is, the smaller the scale of West small features on the land. such as an individual house,
Small scale maps show large features, such as an entire city. So, a1:50,000 map has large area (and therefore less detail) on one sheet, whereas 1:12,500 map has a small area (and merefore

The most popular maps

1:50,000 scale
Ordnance Survey Landranger Maps: 204 of these pink-sleeved You'll find footpaths, rights of way and some tourist information features on these maps, but you do lose some detail as compared to smaller scale maps such as the 1:25 000. This means
you won't find minor paths, field boundaries, open access areas and public rights of way, or smaller areas of marshland, rocky ground or small don't be put off Landrangers, becaus they do have their place in walking and mountaineering. Indeed, some
Scottish Mountain Rescue teams use
these as standard issues where fences and rights of way are unimportant and where they need to view larger areas of land.
Why should I use these? In places where the terrain is extremely complex or very spread out, too much detail can become confusing and the 1:50,000 scale is easier to follow.
unique folding pattern of the compact Ultramaps allows you to open to either side of the sheet. They show all the detair you'd expect on a large-scale walls fences and rights of way Why should I use these? Iike 1.50000 scale these 1:40,000 maps are often preferable in confusingly are often preferable in confusing general view of the shape of the land is required.

Harvey National Trail Maps: All the detail needed for sure navigation of your chosen National Trail is shown, with 100 miles of detailed mapping on one sheet along with an introduct hailites Drailabe in tows and information on finding accommodation, camping and food plus ranger service contacts are all shown.
Harvey Ultramaps: Slim, light and pocket-perfect (weighing 25 gms), the

1:25,000 scale Oranance Survey Explorer

 Maps: 403 of these orange-sleeved maps cover the whole of Great Britain (with the exception of the sle of Man, which is excluded from this series). They show the detail of Britain's landscape, minor paths, field boundaries (walls and fences) of way (except in Scotland where

1:12,500 scale

 Harvey Summit Maps: Although they only cover an area of $4 \times 3 \mathrm{~km}$, maps are used by some Mountain Rescue teams as they are excellent for complex ridges such as the Cuillin for complex ridges such as the Cuilin SkyeWhy should I use these? For navigating super-complex mountain difficult Cuillin Ridge, these maps offer an extremely clear view.

the 'right to roam' act covers most

 land), and small areas of marshland, rocky ground and small streams.
benalder Harvey Superwalker

 Maps: Like theOS Explorers the
1:25,000 scale of the superwalkers shows land shape in clear
and accurate detail.
However, although pub
footpaths, brideways and other key features are shown, these Harvey maps do away with information irrelevant to the walker, making them appear less cluttered than their Ordnance Survey equivalents. Why should I use these? Because of the extra detail shown they are superb for micro-navigation when you need to be able to identify as much of
the terrain as possible.

Important considerations when choosing your inap Durability: Using a map cover will protect your map, but these can be unwieldy and you may need to take a paper map out to refold it as you move across terrain - not ideal in the rain. Laminated maps are waterproof and these are good, but my preference is maps that are printed directly onto a plastic material (all Harvey Maps are 100 per cent) as these fold more easily and are less cumbersome.
Buy the most up-to-date maps you can: From the minute they ar produced maps start going out of date. New OS maps come with a free digital version of the sheet, which will update automatically will not

MUSHOTEF YOUR MAP

I place a great deal of emphasis on manually personalising and updating maps; you should do so too. Annotate your maps, indicating streams that have dried up, paths that are correct, a rock fall or wash-out, unmarked potholes, ne
racks, overgrowth, scree and great areas to wild camp.

